Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Preparation and evaluation of carvedilol-loaded solid lipid nanoparticles for targeted drug delivery

Zeynep Kipriye1, Behiye Senel2, Evrim Yenilmez3

1Institute of Health Sciences; 2Department of Pharmaceutical Biotechnology; 3Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eski#1;ehir, Turkey.

For correspondence:-  Evrim Yenilmez   Email: evrimakyil@anadolu.edu.tr   Tel:+905325575409

Accepted: 22 August 2017        Published: 30 September 2017

Citation: Kipriye Z, Senel B, Yenilmez E. Preparation and evaluation of carvedilol-loaded solid lipid nanoparticles for targeted drug delivery. Trop J Pharm Res 2017; 16(9):2057-2068 doi: 10.4314/tjpr.v16i9.4

© 2017 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To develop suitable solid lipid nanoparticles (SLN) containing carvedilol (CL) for controlled delivery to site of action.
Methods: Solid lipid nanoparticles (SLNs) containing carvedilol (CL) were prepared by hot homogenization and ultrasonication methods. The SLNs were characterized in terms of entrapment efficiency, particle size, zeta potential, polydispersity index, cytotoxicity, solid state characterization and drug release. The stability of the formulations was investigated by monitoring their properties for a period of 3 months.
Results:  The mean size of the nanoparticles was in the range of 130.70 ± 1.80 to 154.40 ± 2.40 nm. Solid state analysis showed that carvedilol was uniformly dispersed in the lipid nanoparticles. Drug entrapment efficiency ranged from 96.03 ± 0.13 to 93.46 ± 0.21 % while in vitro cumulative drug release from the nanoparticles in simulated intestinal fluid (SIF) and phosphate buffer containing 30% PEG (pH 6.8) was 96.57 ± 0.40 and 75.13 ± 0.15 %, respectively, at the end of 24 h. In vitro release of carvedilol from SLNs followed fist order kinetics and Higuchi diffusion model.
Conclusion: The SLNs developed in this study represent a promising safe system for the sustained and controlled delivery of carvedilol.
 

Keywords: Carvedilol, Solid lipid nanoparticles, Antihypertensive, Sustained release

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates